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Abstract

An analytical model for damaged woven fabric composites is developed using the theory of advanced mechanics of
materials. The analysis is based on Castigliano’s second theorem and utilizes a damaged mosaic model laminate. Three
damage modes (i.e., transverse yarn cracking, interface debonding, and sliding with friction at the interface) are con-
sidered. Only one independent interfacial parameter, the friction coefficient between warp and fill yarns, is introduced in
the analysis. A closed-form formula is provided for estimating effective Young’s modulus of damaged woven laminates.
A parametric study of some 192 sample cases of two different composite systems (i.e., glass fiber/epoxy and ceramic
fiber/ceramic) is conducted to illustrate the application and significance of the newly derived analytical model. The
numerical values of the effective Young’s modulus for the special case involving only transverse yarn cracking (the first
damage mode) estimated by the present mechanics-of-materials model agree fairly well with those predicted by an
elasticity-based model [Int. J. Solids Struct. 38 (2001) 855]. For the general case involving all three damage modes
simultaneously, the present model reveals the complex nature of Young’s modulus reduction in a quantitative manner,
which differs from existing models.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the last three decades the “high-tech” composites based on unidirectional continuous fiber-reinforced
laminates, together with the “high-volume” composites reinforced by short fibers or particulates, have been
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thoroughly studied and successfully applied in many industries including construction, transportation and
manufacturing. However, limited research has been conducted on fabric-reinforced composites, often called
textile composites, partially due to the complexities of their microstructures and the difficulties in modeling
them.

Textile (including woven, braided and knitted) composites are produced by impregnating dry fabric
preforms with a matrix material through a chemical/physical process. A reinforcing fabric preform is
mechanically made by interlacing two or more sets of (orthogonal) fiber bundles (yarns) according to a
given weaving/braiding/knitting pattern. Since the number of possible fabric preforms is virtually un-
limited, textile composites offer a great potential for tailored (optimal) designs and increased applications.
Specifically, such composites have the following major advantages over unidirectional laminate com-
posites: (1) the handling is easier and the fabrication cost could be lower, since the state-of-the-art
weaving equipment existing in textile industries can be adapted/used; (2) the delamination problem can be
solved by using suitable three-dimensional preform manufacturing processes; (3) the through-thickness
strength is higher and the impact resistance is improved; (4) thick textile composites are easier to produce;
(5) three-dimensional structural components of composites can be produced without using joints. These
merits have made textile composites very attractive in structural applications. For instance, the horizontal
stabilizers of Boeing 737 airplane were built using woven fabric composites (McCarty et al., 1982), and
about 25% of the composite components used in F22 Aircraft were made from woven fabric composites
(Roy, 1998a).

On the other hand, the interlacing and undulations of fiber yarns and the interactions between yarns and
matrix make the geometrical modeling of textile composites alone very difficult. The situation is even worse
for stress analyses and/or damage modeling. Most publications on textile composites have been devoted to
predictions and/or measurements of their thermo-elastic properties (see, for example, Tan et al., 1997; Gao
and Mall, 2000). Very few studies have been reported on modeling of damaged/cracked textile composites,
and, as a result, the failure mechanisms of such composites are still not well understood.

Because of their highly complex microstructures, even woven composites, the simplest form of textile
composites, are very difficult to characterize either experimentally or analytically. This necessitates ap-
proximations/simplifications of various kinds in their modeling. For example, three one-dimensional
models (i.e., mosaic, crimp and bridging) were developed using the classical laminate theory to estimate
material properties of woven composites analytically (Chou and Ishikawa, 1989), and a cross-ply laminate
model was used to simulate the behavior of a cracked plain-weave ceramic matrix composite (Birman and
Byrd, 1999). Also, special cross-ply laminates were constructed and used as ‘“model laminates” to study the
failure mechanisms of woven composites experimentally (Roy, 1998b). More recently, a cracked mosaic
model was proposed to predict stress distributions in and effective Young’s modulus of damaged woven
composites (Gao and Mall, 2001).

The objective of this paper is to present a simple mechanistic model for estimating effective Young’s
modulus of damaged woven composites using the theory of advanced mechanics of materials. This model
is based on Castigliano’s second theorem in structural mechanics, as opposed to the previous analysis by
Gao and Mall (2001) built on the minimum complementary energy principle in continuum mechanics.
The current analysis is a first attempt at modeling damaged woven composites using principles of me-
chanics of materials and concepts of structural analysis. The rest of this paper is organized as follows. In
Section 2, the equilibrium analysis of the mechanics-of-materials type is carried out to solve for the re-
sultant forces in each block of an identified unit cell. Castigliano’s second theorem is applied in Section 3
to derive the load-displacement relation on the unit cell level. In Section 4, this resulting relation is
utilized in the context of composite homogenization theory to obtain a closed-form formula for calcu-
lating the effective Young’s modulus of the damaged laminate. Numerical results for sample cases are
provided in Section 5 to illustrate the application and significance of the new model. A summary is given
in the sixth and last section.
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2. Equilibrium analysis

It has been known from experimental studies (Morvan and Baste, 1998; Gao et al., 1999) that possible
damage modes for planar woven fabric composites under uniaxial tensile loading include cracking of
transverse yarns, interface debonding, sliding with friction at the interface, longitudinal yarn cracking, and
fiber—-matrix sliding inside longitudinal yarns. Transverse yarn cracking, as the first observable type of
damage in woven composites such as SiC/SiC (Morvan and Baste, 1998), graphite/epoxy (Roy, 1998b) and
carbon/polyimide (Gao et al., 1999), has been recently analyzed by Gao and Mall (2001) using the principle
of minimum complementary energy. As a first step toward modeling of the damaged woven composites
based on three-dimensional elasticity theory, the analysis of Gao and Mall (2001) considered only the first
damage mode and used a mosaic laminate model. As a natural extension of that analysis, the present
model, also utilizing a mosaic laminate, deals with the first three damage modes mentioned above.

Consider a uniaxially loaded woven laminate with the out-of-phase stacking configuration and involving
three damage modes, as shown in Fig. 1. Based on the experimental observations of Roy (1998b) and Gao
et al. (1999), it is assumed that the cracks in transverse yarns are of the through-thickness type and are, as a
first approximation, uniformly located in the middle of each transverse yarn. The second and third damage
modes, i.e., interface debonding and sliding with friction at the interface, will be characterized through
enforcing interface traction continuity conditions and invoking appropriate interfacial constitutive relations.

In addition, we assume that the laminate is in the plane stress state in the width direction and that the
warp and fill yarns are identical orthotropic (or transversely isotropic) materials. Then, from symmetry and
periodicity only the repeating unit illustrated in Fig. 2, which is also identified in Fig. 1 using dashed lines,
needs to be analyzed. It has the length L, height 4 and width 1, as shown in Fig. 2, where L. is the debonded
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Fig. 1. Woven laminate with cracked transverse yarns and damaged interfaces.
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length and L is the sliding length, both along the interface y = 0. Note that L. and L can be adjusted
independently as long as L./2 + Ly < L/2 is satisfied. It is pointed out that the way of treating the sliding
zone as extended from a debonded zone on the interface here is similar to what was done by Tandon and
Pagano (1996) in modeling damaged unidirectional brittle matrix composites.

Aiming at developing a simple mechanistic model, we will be primarily using concepts of structural
analysis and principles of advanced mechanics of materials. It is assumed that the repeating unit shown in
Fig. 2 can be decomposed into 10 blocks (structural members), each of which can deform independently.
The adjacent blocks are linked to each other through the traction/resultant force continuity conditions at
the yarn and block interfaces. The constant resultant forces in Blocks 1, 5, 6 and 10, which are obtained
here by inspection, can also be rigorously determined from the equilibrium equations and the boundary
conditions using the elasticity theory, as was done by Gao and Li (2002) in a separate analysis of a relevant
problem. The free body diagrams of the differential elements of the remaining six blocks are illustrated in
Fig. 3. Based on these free body diagrams, standard equilibrium analyses of the mechanics-of-materials
type can be carried out for each block by enforcing > F, =0, > F, = 0 and > M, = 0, where the subscripts
x, y and z represent the three axes of the Cartesian coordinate system, with z being the out-of-plane axis (see
Fig. 2). The results of such analyses are given in the following.

For Block 1, which is traction-free on its top, bottom and left surfaces (see Fig. 2), the resultant forces
are, by inspection,

N =01 =M =0. (1)
For Block 5, which is traction-free on its top and bottom surfaces and subjected to N, on its right surface
(see Fig. 2), the resultant forces are, by inspection,

Ns =Ny, Os =Ms =0, (2)
where N, is the external load in the x-direction. For Block 6, which is traction-free on its top surface, shear-

free on its bottom surface and subjected to N, on its left surface (see Fig. 2), the resultant forces are, by
inspection,

Ng = N, O = Mg = 0. (3)

For Block 10, which is traction-free on its top and right surfaces and shear-free on its bottom surface (see
Fig. 2), the resultant forces are, by inspection,
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Fig. 3. Free body diagrams.



X.-L. Gao et al. | International Journal of Solids and Structures 40 (2003) 981-999 985

Nip = Q19 = My = 0. (4)
For Block 2 (see Fig. 3a),
dn, d Toih dm.
Tzf:azv 62i:%5 0, — Z :*Eza (5a,b,¢)

where a;, T; are, respectively, the normal and tangential stress components acting on the interface between
Blocks 2 and 7, and N,, O, and M, are, respectively, the normal force, shear force and bending moment (i.e.,

[T

resultant forces) in Block 2. The subscript “i”” in Egs. (5a,b,c) and in the sequel stands for “interface”. The

resultant force continuity conditions on x = —(L — L.)/2 (see Fig. 2) require that
N2|x:7L—_21.c = 07 Q2|X:7L—+ = 0, Mz‘x:J—% = 0, (63, b, C)
where use has been made of Eq. (1). For Block 3 (see Fig. 3b),
dnN, do; T3;h dM;
i = 1. i = T T K_._:_—a 77ba
73 dx 03 dx 0s 4 dx (7a,b,¢)

where o3;, T3; are, respectively, the normal and tangential stress components acting on the interface between
Blocks 3 and 8, and N3, O; and Mj are the resultant forces in Block 3. The continuity conditions on x = 0
(see Fig. 2) are

N3|x:0 = N2|x:07 Q3|x:0 = Q2 |x:07 M3|x:0 = M2|x:0’ (837 b? C)
For Block 4 (see Fig. 3c),
_ ANy _ dos h o dM,

i ) P = T - =T 9a,b,
A P a % dx (%,b,¢)
where ay4;, 74, are, respectively, the normal and tangential stress components acting on the interface between
Blocks 4 and 9, and Ny, Q4 and M, are the resultant forces in Block 4. The boundary conditions on
x = (L —L.)/2 (see Fig. 2) require that

N4|x:% = NX, Q4|x:% = 0, M4|x:% = 07 (103, b, C)

where use has been made of Eq. (2). For Block 7 (see Fig. 3d),
dn; d Toih dm:

T2i:_a77 6C1_02i:%? Q7_iT:_E77 (11a7b7c)
where o, is the normal stress component acting on Block 7 at the middle plane x = —4/2, and N;, Q; and
M; are the resultant forces in Block 7. The resultant force continuity conditions on x = —(L — L,)/2 are

N7|x:_% = Nx> Q7|x:_% = 05 M7‘x:_# = 0’ (128_, ba C)

where use has been made of Eq. (3). For Block 8 (see Fig. 3e),

‘C3i:_%7 Ucz—Usiz—%’ Qs_rzh:_%’ (13a,b,¢)
where o, is the normal stress component acting on Blocks 8 and 9 at the middle plane y = —#4/2, and Ng, O
and M; are the resultant forces in Block 8. The continuity conditions on x = 0 require that

Ns|og =Ni1li—gs  Oslicg = O1lior Ms|g = Ma, . (14a,b,c¢)
For Block 9 (see Fig. 3f),

= dNg o — Gay = — d0, 0y — T4ih _ _dM, (15a,b,¢)

T
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where Ny, Q9 and My are the resultant forces in Block 9. The resultant force continuity conditions on
x=(L—L.)/2 (see Fig. 2) are

N9| z% = O’ Q9|x:@ = 07 M9| _LLle = Oa (16a,b,c)

X X 3

where use has been made of Eq. (4). Finally, the continuity conditions on x = (L — L.)/2 — L, require that

N3 |x:L72L°—Ls = N4|x:L7L°7L57 Q3 |x:l‘72LC7LS = Q4 ‘x:lﬁLC—Lg M3 |)c:l“7L“7LS = M4|x:L7L°—LS5 (1735 b) C)

2 2 2 2

and

N8|X:L72$—Ls = N9|x:L—ZLc_LS, Qg |)(:L7LC_LS = Qg‘x:LfLC_LS, Mg |x:%—Ls = M9|X:L—ZLC_LS. (18a, b,C)

2 2

Clearly, all equilibrium equations, boundary conditions and interface continuity conditions have already
been enforced in the context of mechanics of materials to derive the mathematical expressions presented
above. In particular, the effects of transverse (fill) yarn cracking (i.e., the first damage mode) and interface
debonding (i.e., the second damage mode) have been incorporated through enforcing the traction-free
boundary conditions as reflected in Egs. (1)—(4). Sliding with friction at the interface, which corresponds to
the third damage mode, needs to be characterized by using appropriate interfacial constitutive laws. Along
the line of Gao et al. (1988), it is assumed that the interfacial shear stress 74 on the sliding interface is
related to the interfacial normal stress (pressure) o4 by

T4 = U0y, (19)

where u is the friction coefficient along the interface. For oy;, a linear slip-softening model (see, for example,
Bao and Song, 1993) is adopted, i.e.,

04,-:D<L_2Lc—x>, (20)

where D is a constant parameter representing the degree of damage of the sliding interface. Mathematically,

D is the linear rate of change (i.e., the slope) of o4 with respect to x (see Fig. 5). This parameter is de-

terminable from given geometry and applied load, as will be shown near the end of this section.
Integrating Eqs. (5a,b,c) and using Eq. (6a,b,c) will lead to

L—-L
N ]

Ox(x) —az,-(x+L_L°>, (21a,b,c)
L

2
i c ih L_Lc
Mz(x)——2<x+ 5 ) +T2 <x+ 5 )

From Egs. (7a,b,c), (8a,b,c) and (21a,b,c) it follows that

L—L
N;(x) :T3ix+‘52i< 5 C),

2

2
_& 2 . L—Lc _’L'3,-h _& L—LC Tz,-h L—LC
Mslx) = 7 [“2‘( 2 ) s 22 ) ta )

L—-L,
Q3 (x) = —03X + 621'( ) ) (223, ba C)
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Using Egs. (9a,b,c), (10a,b,c), (19) and (20) gives

1 L—L, 2
N4(x)——§uD< . —x) N

o0 =4n(155 ).
My(x) _%D<L2LC —x)z[—?‘/m% (L2L° —xﬂ.

From Egs. (11a,b,c) and (12a,b,c) one obtains

L—L.
Ni(x) = =1 | x + 5 + Ny,

0r(6) = (o — ) (x + £ 57 )

(00 — o) L—L\*> 1w L—L,
M;(x) = 7 x+ 7 +4 x+ 7 .

The use of Egs. (13a,b,c), (14a,b,c) and (24a,b,c) results in

L—L
Ng(x) = —13x — 7521'( 3 C> + N,

00 = (02 = g+ (o = o) “57),

(23a,b,¢)

(24a,b,c)

My (x) = %ﬂxz - {(acl — o) (ﬂ) _ Tﬂl}x (00 — a2)

It follows from Egs. (15a,b,¢), (16a,b,c), (19) and (20) that

1 (L—L

Ng(x)—z,uD< 3 —x>,

2
or=o(E5 ) (550

2
2
My (x) —;(L;LC —x> [ch —z,uD—;D<L _ZLC —x>].

Using Egs. (22a) and (23a) in Eq. (17a) gives

L—L, L— L. 1
< 2 ‘LS)”Z”(T>+5“DL3:N*

The global equilibrium of the repeating unit (see Fig. 4) requires that

—Lc

L—L L—L. 0 =
—0cl + 0c2 = 07 - O-cl-de + O-cz.xdx = 4
2 2 e 0 0

(25a,b,¢)
(26a,b,c)
(27)
h/2
%y dy, (28a,b)
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Y ofe]

which gives
2N.h

—(L P (29)

Ocl = 02 =

The continuity of the normal interfacial stress at x = (L — L.)/2-L (see Figs. 2 and 5) yields, using Eq. (20),
g3; = DLS (30)
Also, the global equilibrium of Blocks 1-5 (see Fig. 5) requires that

L—1L. L—1L. 1
0 3 = 03 > — L +§O-3iLsa

0 L—ZLLLS L—ZLc IL—1 h)2 N (313, b)
—/ Gzide+/ 03ide+/ D( C—)c)xdx—2/ —ydy =0.
7% 0 %*Ls 2 0 h
The solution of Egs. (31a,b) gives
6Nxh i L— Lc - Ls
oy = oy = Lo L) (32a,b)

6L> — OLL, — 12LL. + 9L.L, + 6L2 + 4L2’ L—L.

To simplify the model, it is further assumed that 7, = t3;. Substituting this and Eq. (30) into Eq. (27) leads
to
Nx - %MLso-Si

To = m (33)



X.-L. Gao et al. | International Journal of Solids and Structures 40 (2003) 981-999 989

Note that we have obtained explicit expressions for the resultant forces in all of the 10 blocks in terms of
the external load N,, given material properties and geometrical constants, and the identified interfacial
parameters yu and D. In fact, D can be obtained from Eqgs. (30) and (32a) in terms of the applied load and the
unit cell geometry as

p_ 6N, 7
Ly 61> —9LL, — 12LL. + 9L.L, + 6L2 + 4L’

(34)

This shows that D is a non-zero constant for given N, # 0 and L < co. Hence, only one independent in-
terfacial (constitutive) parameter, u, is involved in this model.

3. Load-displacement relation

In the preceding section, the resultant forces in each of the 10 blocks of the repeating unit have been
determined. In order to obtain the effective Young’s modulus of the damaged woven laminate, one only
needs to derive the stress—strain relation on the repeating unit level. Equivalently, it will be sufficient to have
the load—displacement relation known for the repeating unit that is subjected to uniaxial loading in the x-
direction (see Fig. 2). This can be done efficiently by using Castigliano’s second theorem in structural
analysis (see, for example, Cook and Young, 1999). As an energy principle, this theorem allows one to work
with scalars (and to use local coordinate systems).

Note that the total complementary energy of the repeating unit is given by

n.=3_1, (35)
where I1; is the complementary energy in the jth block. For Block 1,

0 /* (N, Nidx M, Mydx O kQ,dx)
1 = — — ,
-5

2 EA 2 El 2 Gud
where the cross-sectional area 4 = h/2, the moment of area I = 43/96, and the transverse shear factor
k =1.2 (Cook and Young, 1999). For Block 2,

L—L¢
2

(36)

O /N, Nodx M, Mrdx Qs kQ,dx
II, = = — = . (37)
_% 2 EzA 2 Ez[ 2 G23A
For Block 3,
n _/Lz“s Ny Nydx | M; Mydx | Qs kQsdx 38)
T 2 EA 2 Ed 2 Gpd )
For Block 4,
L—Lc¢
2 Ny N4dJC My M4dx Q4 kQ4 dx
I, = -4 4 L ,
! /L ( 2 Ed 2 El 2 Gid (39)
For Block 5,

—Lc

2

5 /NsNsdx Ms Msdx Qs kQsdx
s = = - = . 4
: / ( 2 Ed 2 El 2 Gpd (40)
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For Block 6,
n :/ Ng Ngdx | Ms Mgdx Qs kQsdx 4n)
) 2 Ed 2 EI 2 Gpd )
For Block 7,
I /0 N; Npdx | My Mydx Q5 kQ;dx @)
! _# 2 E]A 2 Ell 2 Gl';A ’
For Block 8,
e /%—Ls (Ngzvgdx My My dx ngdix> (43)
$~ 2 ExAd 2 E 2 Gpd )
For Block 9,
i / No Nodx My Mydx Qs kQydx (44)
’ %—Ls 2 E2A 2 Ez[ 2 G23A '
Finally, for Block 10,
. / Nig Nigdx | Myg Mygdx Qi kQiodx 5)
10 L-Lc 2 EzA 2 Ez] 2 G23A '

2

Note that £, and G,3(« € {1,2}) in Egs. (36)—(45) are material properties with respect to the three principal
material axes of warp/fill yarns.
Applying Castigliano’s second theorem then gives, from Eq. (35),

RN
S ON, 4 ON,

Ay (46)

where 4, is the displacement of the repeating unit in the loading direction. By using Egs. (1)-(4) and
(21a,b,c)—(26a,b,c) in Eqs. (36)—-(45), 0I1;/0N,(j € {1,2,...,10}) can be explicitly evaluated. The results are
provided in Appendix A. The substitution of these results into Eq. (46) will then lead to the final expression
of the load—displacement relation A, = f(N,).

4. Young’s modulus

The effective Young’s modulus of the damaged laminate can be determined using the average strain
theorem in homogenization theory of composite materials (see, for example, Hashin, 1983). According to
this theorem,

0 4

e =8 =

P-m=, (47)

where ¢ is the uniform (constant) strain applied in the longitudinal direction on the homogenized body.
Therefore, the effective Young’s modulus is given by
a. LN,

B=g=ha (48)



X.-L. Gao et al. | International Journal of Solids and Structures 40 (2003) 981-999 991

Using the functional relationship 4, = f(N,) derived in the preceding section, one can finally obtain from
Eq. (48) that
1L 1 CN3+CN4+CN5+CN6+CN7+CM3+CM4+CM7 +CQ3+CQ4+CQ7
E:h 2E A 1 2G4
1 <CN2+CN8+CN9+CM2+CM8+CM9> +CQ2+CQ8+CQ9

— 4
2E, A I 2Gy3A (49)
where constants Cy> — Co, Cgo — Cos, Co7 — Cgo, Crrz — Cus and Cy7 — Ciypo are given in Appendix B. By
using the closed-form formula given in Eq. (49), the effective Young’s modulus of the damaged laminate,
E?, can be readily determined.

5. Numerical results

To illustrate the analytical solution derived above, a parametric study of sample cases is carried out in
this section. Two unidirectional composites, glass fiber/epoxy and ceramic fiber/ceramic, are used as warp/
fill yarn materials in this study. The engineering properties of the two composites, which are regarded as
transversely isotropic, are listed in Table 1, where the subscripts ‘A’ and “T” stand for axial and transverse
directions, respectively. These properties are taken from Hashin (1987) (for the glass fiber/epoxy composite)
and Ji et al. (1998) (for the ceramic fiber/ceramic composite).

Some representative numerical values of the effective Young’s modulus (£7) are graphically illustrated in
Figs. 6-9, which are obtained using Eq. (49). In each case, three values of L/h, which symbolizes the density
of cracks in transverse yarns, are considered. Following Gao et al. (1988), u = 0.1 is taken in the sample
calculations. The Mathematica program (Wolfram, 1996) is employed in the computation.

Based on the numerical data shown in Figs. 6-9, the following observations can be made:

(1) The effective Young’s modulus (£?) estimated by the current mechanics-of-materials model agrees
fairly well with that predicted by the more accurate variational solution derived in Gao and Mall (2001).
For example, when L/h =3 the two values of E* obtained here for the case with only transverse yarn
cracking (that is, L, = 0 = Ly), i.e., 17.47 and 81.35 GPa, are quite close to the two corresponding values
(plane stress case) given in Gao and Mall (2001), which are 17.81 and 83.33 GPa, respectively.

(2) The larger L/h is, the larger E* becomes. This is true for all sample cases having different L. and/or L.
That is, when the density of transverse yarn cracks (4/L) is smaller, the reduction in Young’s modulus is
less, regardless of the influences of the second and third damage modes. Also, it is seen that the values of E?
corresponding to two neighboring values of L/h are getting closer when L/h becomes larger. These reflect
the effects of transverse yarn cracking (i.e., the first damage mode) on the stiffness of the damaged laminate.
The trends shown here are the same as those demonstrated by the variational solution of Gao and Mall
(2001), where only the first damage mode is considered.

Table 1
Material properties
Property Glass/epoxy Ceramic/ceramic
Ex (GPa) 41.7 140.0
Er (GPa) 13.0 88.0
va 0.30 0.20
VT 0.42 0.26
Ga (GPa) 3.40 44.0

Gr (GPa) 4.58 35.0
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Fig. 9. Young’s modulus vs. debonded length: ceramic/ceramic material.

(3) The further reduction in Young’s modulus due to interface debonding (in addition to the reduction
caused by transverse yarn cracking and interface sliding) appears to be monotonic: the larger the debonded
length is, the smaller Young’s modulus becomes. This holds for both composite systems, as illustrated in
Figs. 7 and 9. The reason for this feature is that progressive debonding along the interface results in the
continuous increase of the length of Blocks 1 and 10, which have zero-valued resultant forces and do not
store any energy, and thus monotonically reduce the load-carrying capacity of the entire unit cell.

(4) Interface sliding also leads to further reduction in Young’s modulus in a monotonic fashion. That is,
Young’s modulus decreases monotonically with the increase of the sliding length, which is true for all cases
considered, as shown in Figs. 6 and 8. This is expected, since a sliding interface (even with friction) is
inherently weaker than a perfectly bonded interface (along which the friction coefficient u is regarded to be
infinitely large).

6. Summary

An analytical model is developed for damaged woven fabric composites using a mosaic (woven) lami-
nate. It provides a closed-form formula for calculating the effective Young’s modulus of damaged woven
laminates. The present analysis is based on Castigliano’s second theorem and is of the mechanics-of-
materials type. The new model accounts for the first three damage modes observed in a typical woven fabric
composite (i.e., transverse yarn cracking, interface debonding, and sliding with friction at the interface),
although it contains only one independent interfacial parameter (i.e., the friction coefficient between warp
and fill yarns).

The current solution, as a closed-form one, is inherently suitable for parametric studies. A parametric
study is performed here for some 192 sample cases using the derived analytical formula. These sample cases
involve two different composite systems (used as the yarn materials). When only the first damage mode (i.e.,
transverse yarn cracking) is present, numerical values of the effective Young’s modulus estimated by the
current mechanics-of-materials model are in fairly good agreement with those predicted by the elasticity
(variational) solution of Gao and Mall (2001). However, when all of the first three damage modes are
involved, the situation becomes more complicated, as demonstrated by the numerical results shown in Figs.
6-9. The new analytical model can deal with this situation in a quantitative manner. In contrast, existing
analytical models, including that of Gao and Mall (2001), do not have this capability.
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As in all other analytical studies, the new model has its own limitations arising from the simplifying
assumptions made to facilitate the derivation. For example, the use of a mosaic laminate ignores undu-
lations of fiber yarns, which can be very important for woven composites with large waviness. Nevertheless,
with all expressions derived in explicit forms, the current analytical model has an additional use, viz. it can
be employed as a benchmark solution to validate computer codes or numerical analyses.
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Appendix A

Note that from Egs. (1) and (36) it follows that

oI,
-0 Al
oN, (A.1)

from Egs. (2) and (40) that
Olls LN,

ON,  2F A’ (A2)
from Egs. (3) and (41) that
ollg L.N;
ON,  2F A’ (A3)
and from Egs. (4) and (45) that
I
=0. A4
N, " (A4)
Using Egs. (21a,b,c) in Eq. (37) gives
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Substituting Egs. (22a,b,c) into Eq. (38) yields
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(A.7)
From Egs. (23a,b,c) and (39) one obtains
L () ()] B BED (5 )
(A.8)
Using Egs. (24a,b,c) in Eq. (42) results in

2%7 = 2E11A {fzi(L _ZLC )2 Bbl(L — L) — 1} +%NX(L — L) {2 - %bl(L —Lc)} }
gy B — o — 0L~ 10"+ gy (0 - L) (ow = o) 55 [P -1 4 O
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where
0o 2h

Cc = aNX :m (AlO)



996 X.-L. Gao et al. | International Journal of Solids and Structures 40 (2003) 981-999

It follows from Egs. (25a,b,c) and (43) that
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Finally, from Eqgs. (26a,b,c) and (44) one obtains
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This completes the evaluation of all 01, /0N, (j € {1,2,...,10}), which will be substituted into Eq. (46) to
obtain 4, = f(N;).
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Appendix B

The constants Cys — Cuo, Cor — Cos, Cg7 — Cg9, Carz — Cas and Cy7 — Cuyo involved in Eq. (49) are given
by
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