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Abstract

An analytical model for damaged woven fabric composites is developed using the theory of advanced mechanics of

materials. The analysis is based on Castigliano�s second theorem and utilizes a damaged mosaic model laminate. Three
damage modes (i.e., transverse yarn cracking, interface debonding, and sliding with friction at the interface) are con-

sidered. Only one independent interfacial parameter, the friction coefficient between warp and fill yarns, is introduced in

the analysis. A closed-form formula is provided for estimating effective Young�s modulus of damaged woven laminates.
A parametric study of some 192 sample cases of two different composite systems (i.e., glass fiber/epoxy and ceramic

fiber/ceramic) is conducted to illustrate the application and significance of the newly derived analytical model. The

numerical values of the effective Young�s modulus for the special case involving only transverse yarn cracking (the first
damage mode) estimated by the present mechanics-of-materials model agree fairly well with those predicted by an

elasticity-based model [Int. J. Solids Struct. 38 (2001) 855]. For the general case involving all three damage modes

simultaneously, the present model reveals the complex nature of Young�s modulus reduction in a quantitative manner,
which differs from existing models.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Woven fabric composites; Damage modeling; Effective Young�s modulus; Energy method; Homogenization theory;
Transverse yarn cracking; Interface debonding; Sliding with friction

1. Introduction

In the last three decades the ‘‘high-tech’’ composites based on unidirectional continuous fiber-reinforced

laminates, together with the ‘‘high-volume’’ composites reinforced by short fibers or particulates, have been
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thoroughly studied and successfully applied in many industries including construction, transportation and

manufacturing. However, limited research has been conducted on fabric-reinforced composites, often called

textile composites, partially due to the complexities of their microstructures and the difficulties in modeling

them.
Textile (including woven, braided and knitted) composites are produced by impregnating dry fabric

preforms with a matrix material through a chemical/physical process. A reinforcing fabric preform is

mechanically made by interlacing two or more sets of (orthogonal) fiber bundles (yarns) according to a

given weaving/braiding/knitting pattern. Since the number of possible fabric preforms is virtually un-

limited, textile composites offer a great potential for tailored (optimal) designs and increased applications.

Specifically, such composites have the following major advantages over unidirectional laminate com-

posites: (1) the handling is easier and the fabrication cost could be lower, since the state-of-the-art

weaving equipment existing in textile industries can be adapted/used; (2) the delamination problem can be
solved by using suitable three-dimensional preform manufacturing processes; (3) the through-thickness

strength is higher and the impact resistance is improved; (4) thick textile composites are easier to produce;

(5) three-dimensional structural components of composites can be produced without using joints. These

merits have made textile composites very attractive in structural applications. For instance, the horizontal

stabilizers of Boeing 737 airplane were built using woven fabric composites (McCarty et al., 1982), and

about 25% of the composite components used in F22 Aircraft were made from woven fabric composites

(Roy, 1998a).

On the other hand, the interlacing and undulations of fiber yarns and the interactions between yarns and
matrix make the geometrical modeling of textile composites alone very difficult. The situation is even worse

for stress analyses and/or damage modeling. Most publications on textile composites have been devoted to

predictions and/or measurements of their thermo-elastic properties (see, for example, Tan et al., 1997; Gao

and Mall, 2000). Very few studies have been reported on modeling of damaged/cracked textile composites,

and, as a result, the failure mechanisms of such composites are still not well understood.

Because of their highly complex microstructures, even woven composites, the simplest form of textile

composites, are very difficult to characterize either experimentally or analytically. This necessitates ap-

proximations/simplifications of various kinds in their modeling. For example, three one-dimensional
models (i.e., mosaic, crimp and bridging) were developed using the classical laminate theory to estimate

material properties of woven composites analytically (Chou and Ishikawa, 1989), and a cross-ply laminate

model was used to simulate the behavior of a cracked plain-weave ceramic matrix composite (Birman and

Byrd, 1999). Also, special cross-ply laminates were constructed and used as ‘‘model laminates’’ to study the

failure mechanisms of woven composites experimentally (Roy, 1998b). More recently, a cracked mosaic

model was proposed to predict stress distributions in and effective Young�s modulus of damaged woven
composites (Gao and Mall, 2001).

The objective of this paper is to present a simple mechanistic model for estimating effective Young�s
modulus of damaged woven composites using the theory of advanced mechanics of materials. This model

is based on Castigliano�s second theorem in structural mechanics, as opposed to the previous analysis by
Gao and Mall (2001) built on the minimum complementary energy principle in continuum mechanics.

The current analysis is a first attempt at modeling damaged woven composites using principles of me-

chanics of materials and concepts of structural analysis. The rest of this paper is organized as follows. In

Section 2, the equilibrium analysis of the mechanics-of-materials type is carried out to solve for the re-

sultant forces in each block of an identified unit cell. Castigliano�s second theorem is applied in Section 3
to derive the load–displacement relation on the unit cell level. In Section 4, this resulting relation is
utilized in the context of composite homogenization theory to obtain a closed-form formula for calcu-

lating the effective Young�s modulus of the damaged laminate. Numerical results for sample cases are
provided in Section 5 to illustrate the application and significance of the new model. A summary is given

in the sixth and last section.
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2. Equilibrium analysis

It has been known from experimental studies (Morvan and Baste, 1998; Gao et al., 1999) that possible

damage modes for planar woven fabric composites under uniaxial tensile loading include cracking of
transverse yarns, interface debonding, sliding with friction at the interface, longitudinal yarn cracking, and

fiber–matrix sliding inside longitudinal yarns. Transverse yarn cracking, as the first observable type of

damage in woven composites such as SiC/SiC (Morvan and Baste, 1998), graphite/epoxy (Roy, 1998b) and

carbon/polyimide (Gao et al., 1999), has been recently analyzed by Gao and Mall (2001) using the principle

of minimum complementary energy. As a first step toward modeling of the damaged woven composites

based on three-dimensional elasticity theory, the analysis of Gao and Mall (2001) considered only the first

damage mode and used a mosaic laminate model. As a natural extension of that analysis, the present

model, also utilizing a mosaic laminate, deals with the first three damage modes mentioned above.
Consider a uniaxially loaded woven laminate with the out-of-phase stacking configuration and involving

three damage modes, as shown in Fig. 1. Based on the experimental observations of Roy (1998b) and Gao

et al. (1999), it is assumed that the cracks in transverse yarns are of the through-thickness type and are, as a

first approximation, uniformly located in the middle of each transverse yarn. The second and third damage

modes, i.e., interface debonding and sliding with friction at the interface, will be characterized through

enforcing interface traction continuity conditions and invoking appropriate interfacial constitutive relations.

In addition, we assume that the laminate is in the plane stress state in the width direction and that the

warp and fill yarns are identical orthotropic (or transversely isotropic) materials. Then, from symmetry and
periodicity only the repeating unit illustrated in Fig. 2, which is also identified in Fig. 1 using dashed lines,

needs to be analyzed. It has the length L, height h and width 1, as shown in Fig. 2, where Lc is the debonded

 

 

  

Fig. 1. Woven laminate with cracked transverse yarns and damaged interfaces.
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Fig. 2. Repeating unit.
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length and Ls is the sliding length, both along the interface y ¼ 0. Note that Lc and Ls can be adjusted
independently as long as Lc=2þ Ls6 L=2 is satisfied. It is pointed out that the way of treating the sliding
zone as extended from a debonded zone on the interface here is similar to what was done by Tandon and

Pagano (1996) in modeling damaged unidirectional brittle matrix composites.
Aiming at developing a simple mechanistic model, we will be primarily using concepts of structural

analysis and principles of advanced mechanics of materials. It is assumed that the repeating unit shown in

Fig. 2 can be decomposed into 10 blocks (structural members), each of which can deform independently.

The adjacent blocks are linked to each other through the traction/resultant force continuity conditions at

the yarn and block interfaces. The constant resultant forces in Blocks 1, 5, 6 and 10, which are obtained

here by inspection, can also be rigorously determined from the equilibrium equations and the boundary

conditions using the elasticity theory, as was done by Gao and Li (2002) in a separate analysis of a relevant

problem. The free body diagrams of the differential elements of the remaining six blocks are illustrated in
Fig. 3. Based on these free body diagrams, standard equilibrium analyses of the mechanics-of-materials

type can be carried out for each block by enforcing
P

Fx ¼ 0,
P

Fy ¼ 0 and
P

Mz ¼ 0, where the subscripts
x, y and z represent the three axes of the Cartesian coordinate system, with z being the out-of-plane axis (see
Fig. 2). The results of such analyses are given in the following.

For Block 1, which is traction-free on its top, bottom and left surfaces (see Fig. 2), the resultant forces

are, by inspection,

N1 ¼ Q1 ¼ M1 ¼ 0: ð1Þ
For Block 5, which is traction-free on its top and bottom surfaces and subjected to Nx on its right surface

(see Fig. 2), the resultant forces are, by inspection,

N5 ¼ Nx; Q5 ¼ M5 ¼ 0; ð2Þ
where Nx is the external load in the x-direction. For Block 6, which is traction-free on its top surface, shear-
free on its bottom surface and subjected to Nx on its left surface (see Fig. 2), the resultant forces are, by
inspection,

N6 ¼ Nx; Q6 ¼ M6 ¼ 0: ð3Þ
For Block 10, which is traction-free on its top and right surfaces and shear-free on its bottom surface (see

Fig. 2), the resultant forces are, by inspection,

B2 N2+dN2 N2 

dx 

M2 

Q2 τ2idx 

σ2idx 

Q2+dQ2 

M2+dM2 

B3N3 

dx 

M3 

Q3 

σ3

(a) (b)

dx dx 

Fig. 3. Free body diagrams.
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N10 ¼ Q10 ¼ M10 ¼ 0: ð4Þ
For Block 2 (see Fig. 3a),

s2i ¼
dN2
dx

; r2i ¼
dQ2
dx

; Q2 �
s2ih
4

¼ � dM2
dx

; ð5a; b; cÞ

where r2i, s2i are, respectively, the normal and tangential stress components acting on the interface between
Blocks 2 and 7, and N2, Q2 andM2 are, respectively, the normal force, shear force and bending moment (i.e.,
resultant forces) in Block 2. The subscript ‘‘i’’ in Eqs. (5a,b,c) and in the sequel stands for ‘‘interface’’. The
resultant force continuity conditions on x ¼ �ðL� LcÞ=2 (see Fig. 2) require that

N2jx¼�L�Lc
2

¼ 0; Q2jx¼�L�Lc
2

¼ 0; M2jx¼�L�Lc
2

¼ 0; ð6a; b; cÞ

where use has been made of Eq. (1). For Block 3 (see Fig. 3b),

s3i ¼
dN3
dx

; r3i ¼ � dQ3
dx

; Q3 �
s3ih
4

¼ � dM3
dx

; ð7a; b; cÞ

where r3i, s3i are, respectively, the normal and tangential stress components acting on the interface between
Blocks 3 and 8, and N3, Q3 and M3 are the resultant forces in Block 3. The continuity conditions on x ¼ 0
(see Fig. 2) are

N3jx¼0 ¼ N2jx¼0; Q3jx¼0 ¼ Q2jx¼0; M3jx¼0 ¼ M2jx¼0: ð8a; b; cÞ
For Block 4 (see Fig. 3c),

s4i ¼
dN4
dx

; r4i ¼ � dQ4
dx

; Q4 �
s4ih
4

¼ � dM4
dx

; ð9a; b; cÞ

where r4i, s4i are, respectively, the normal and tangential stress components acting on the interface between
Blocks 4 and 9, and N4, Q4 and M4 are the resultant forces in Block 4. The boundary conditions on
x ¼ ðL� LcÞ=2 (see Fig. 2) require that

N4jx¼L�Lc
2

¼ Nx; Q4jx¼L�Lc
2

¼ 0; M4jx¼L�Lc
2

¼ 0; ð10a; b; cÞ

where use has been made of Eq. (2). For Block 7 (see Fig. 3d),

s2i ¼ � dN7
dx

; rc1 � r2i ¼
dQ7
dx

; Q7 �
s2ih
4

¼ � dM7
dx

; ð11a; b; cÞ

where rc1 is the normal stress component acting on Block 7 at the middle plane x ¼ �h=2, and N7, Q7 and
M7 are the resultant forces in Block 7. The resultant force continuity conditions on x ¼ �ðL� LcÞ=2 are

N7jx¼�L�Lc
2

¼ Nx; Q7jx¼�L�Lc
2

¼ 0; M7jx¼�L�Lc
2

¼ 0; ð12a; b; cÞ

where use has been made of Eq. (3). For Block 8 (see Fig. 3e),

s3i ¼ � dN8
dx

; rc2 � r3i ¼ � dQ8
dx

; Q8 �
s3ih
4

¼ � dM8
dx

; ð13a; b; cÞ

where rc2 is the normal stress component acting on Blocks 8 and 9 at the middle plane y ¼ �h=2, and N8, Q8
and M8 are the resultant forces in Block 8. The continuity conditions on x ¼ 0 require that

N8jx¼0 ¼ N7jx¼0; Q8jx¼0 ¼ Q7jx¼0; M8jx¼0 ¼ M7jx¼0: ð14a; b; cÞ
For Block 9 (see Fig. 3f),

s4i ¼ � dN9
dx

; rc2 � r4i ¼ � dQ9
dx

; Q9 �
s4ih
4

¼ � dM9
dx

; ð15a; b; cÞ
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where N9, Q9 and M9 are the resultant forces in Block 9. The resultant force continuity conditions on
x ¼ ðL� LcÞ=2 (see Fig. 2) are

N9jx¼L�Lc
2

¼ 0; Q9jx¼L�Lc
2

¼ 0; M9jx¼L�Lc
2

¼ 0; ð16a; b; cÞ

where use has been made of Eq. (4). Finally, the continuity conditions on x ¼ ðL� LcÞ=2� Ls require that

N3jx¼L�Lc
2

�Ls
¼ N4jx¼L�Lc

2
�Ls

; Q3jx¼L�Lc
2

�Ls
¼ Q4jx¼L�Lc

2
�Ls

; M3jx¼L�Lc
2

�Ls
¼ M4jx¼L�Lc

2
�Ls

; ð17a; b; cÞ

and

N8jx¼L�Lc
2

�Ls
¼ N9jx¼L�Lc

2
�Ls

; Q8jx¼L�Lc
2

�Ls
¼ Q9jx¼L�Lc

2
�Ls

; M8jx¼L�Lc
2

�Ls
¼ M9jx¼L�Lc

2
�Ls

: ð18a; b; cÞ

Clearly, all equilibrium equations, boundary conditions and interface continuity conditions have already

been enforced in the context of mechanics of materials to derive the mathematical expressions presented

above. In particular, the effects of transverse (fill) yarn cracking (i.e., the first damage mode) and interface

debonding (i.e., the second damage mode) have been incorporated through enforcing the traction-free

boundary conditions as reflected in Eqs. (1)–(4). Sliding with friction at the interface, which corresponds to
the third damage mode, needs to be characterized by using appropriate interfacial constitutive laws. Along

the line of Gao et al. (1988), it is assumed that the interfacial shear stress s4i on the sliding interface is
related to the interfacial normal stress (pressure) r4i by

s4i ¼ lr4i; ð19Þ
where l is the friction coefficient along the interface. For r4i, a linear slip-softening model (see, for example,
Bao and Song, 1993) is adopted, i.e.,

r4i ¼ D
L� Lc
2

�
� x

�
; ð20Þ

where D is a constant parameter representing the degree of damage of the sliding interface. Mathematically,
D is the linear rate of change (i.e., the slope) of r4i with respect to x (see Fig. 5). This parameter is de-
terminable from given geometry and applied load, as will be shown near the end of this section.

Integrating Eqs. (5a,b,c) and using Eq. (6a,b,c) will lead to

N2ðxÞ ¼ s2i x
�

þ L� Lc
2

�
;

Q2ðxÞ ¼ r2i x
�

þ L� Lc
2

�
;

M2ðxÞ ¼ � r2i
2

x
�

þ L� Lc
2

�2
þ s2ih
4

x
�

þ L� Lc
2

�
:

ð21a; b; cÞ

From Eqs. (7a,b,c), (8a,b,c) and (21a,b,c) it follows that

N3ðxÞ ¼ s3ixþ s2i
L� Lc
2

� �
;

Q3ðxÞ ¼ �r3ixþ r2i
L� Lc
2

� �
;

M3ðxÞ ¼
r3i
2
x2 � r2i

L� Lc
2

� ��
� s3ih
4

�
x� r2i
2

L� Lc
2

� �2
þ s2ih
4

L� Lc
2

� �
:

ð22a; b; cÞ

986 X.-L. Gao et al. / International Journal of Solids and Structures 40 (2003) 981–999



Using Eqs. (9a,b,c), (10a,b,c), (19) and (20) gives

N4ðxÞ ¼ � 1
2

lD
L� Lc
2

�
� x

�2
þ Nx;

Q4ðxÞ ¼
1

2
D

L� Lc
2

�
� x

�2
;

M4ðxÞ ¼
1

2
D

L� Lc
2

�
� x

�2�
� h
4

l þ 1
3

L� Lc
2

�
� x

��
:

ð23a; b; cÞ

From Eqs. (11a,b,c) and (12a,b,c) one obtains

N7ðxÞ ¼ �s2i x
�

þ L� Lc
2

�
þ Nx;

Q7ðxÞ ¼ rc1ð � r2iÞ x
�

þ L� Lc
2

�
;

M7ðxÞ ¼ � rc1 � r2ið Þ
2

x
�

þ L� Lc
2

�2
þ s2ih
4

x
�

þ L� Lc
2

�
:

ð24a; b; cÞ

The use of Eqs. (13a,b,c), (14a,b,c) and (24a,b,c) results in

N8ðxÞ ¼ �s3ix� s2i
L� Lc
2

� �
þ Nx;

Q8ðxÞ ¼ � rc2ð � r3iÞxþ ðrc1 � r2iÞ
L� Lc
2

� �
;

M8ðxÞ ¼
rc2 � r3ið Þ
2

x2 � rc1ð
�

� r2iÞ
L� Lc
2

� �
� s3ih
4

�
x� rc1 � r2ið Þ

2

L� Lc
2

� �2
þ s2ih
4

L� Lc
2

� �
:

ð25a; b; cÞ
It follows from Eqs. (15a,b,c), (16a,b,c), (19) and (20) that

N9ðxÞ ¼
1

2
lD

L� Lc
2

�
� x

�2
;

Q9ðxÞ ¼ � 1
2
D

L� Lc
2

�
� x

�2
þ rc2

L� Lc
2

�
� x

�
;

M9ðxÞ ¼
1

2

L� Lc
2

�
� x

�2
rc2

�
� h
4

lD� 1
3
D

L� Lc
2

�
� x

��
:

ð26a; b; cÞ

Using Eqs. (22a) and (23a) in Eq. (17a) gives

s3i
L� Lc
2

�
� Ls

�
þ s2i

L� Lc
2

� �
þ 1
2

lDL2s ¼ Nx: ð27Þ

The global equilibrium of the repeating unit (see Fig. 4) requires that

�rc1
L� Lc
2

� �
þ rc2

L� Lc
2

� �
¼ 0; �

Z 0

�L�Lc
2

rc1xdxþ
Z L�Lc

2

0

rc2xdx ¼ 4
Z h=2

0

Nx

h
y dy; ð28a; bÞ
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which gives

rc1 ¼ rc2 ¼
2Nxh

L� Lcð Þ2
: ð29Þ

The continuity of the normal interfacial stress at x ¼ ðL� LcÞ=2–Ls (see Figs. 2 and 5) yields, using Eq. (20),
r3i ¼ DLs: ð30Þ

Also, the global equilibrium of Blocks 1–5 (see Fig. 5) requires that

r2i
L� Lc
2

� �
¼ r3i

L� Lc
2

�
� Ls

�
þ 1
2

r3iLs;

�
Z 0

�L�Lc
2

r2ixdxþ
Z L�Lc

2
�Ls

0

r3ixdxþ
Z L�Lc

2

L�Lc
2

�Ls

D
L� Lc
2

�
� x

�
xdx� 2

Z h=2

0

Nx

h
y dy ¼ 0:

ð31a; bÞ

The solution of Eqs. (31a,b) gives

r3i ¼
6Nxh

6L2 � 9LLs � 12LLc þ 9LcLs þ 6L2c þ 4L2s
; r2i ¼

r3iðL� Lc � LsÞ
L� Lc

: ð32a; bÞ

To simplify the model, it is further assumed that s2i ¼ s3i. Substituting this and Eq. (30) into Eq. (27) leads
to

s2i ¼
Nx � 1

2
lLsr3i

L� ðLs þ LcÞ
: ð33Þ

y 

o Nx B1 B2 B3 B4 

Fig. 4. Global equilibrium of the repeating unit.

y 

Fig. 5. Global equilibrium of Blocks 1–5.
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Note that we have obtained explicit expressions for the resultant forces in all of the 10 blocks in terms of

the external load Nx, given material properties and geometrical constants, and the identified interfacial

parameters l and D. In fact, D can be obtained from Eqs. (30) and (32a) in terms of the applied load and the
unit cell geometry as

D ¼ 1
Ls

6Nxh
6L2 � 9LLs � 12LLc þ 9LcLs þ 6L2c þ 4L2s

: ð34Þ

This shows that D is a non-zero constant for given Nx 6¼ 0 and L < 1. Hence, only one independent in-
terfacial (constitutive) parameter, l, is involved in this model.

3. Load–displacement relation

In the preceding section, the resultant forces in each of the 10 blocks of the repeating unit have been

determined. In order to obtain the effective Young�s modulus of the damaged woven laminate, one only
needs to derive the stress–strain relation on the repeating unit level. Equivalently, it will be sufficient to have

the load–displacement relation known for the repeating unit that is subjected to uniaxial loading in the x-
direction (see Fig. 2). This can be done efficiently by using Castigliano�s second theorem in structural
analysis (see, for example, Cook and Young, 1999). As an energy principle, this theorem allows one to work

with scalars (and to use local coordinate systems).
Note that the total complementary energy of the repeating unit is given by

Pc ¼
X10
j¼1

Pj; ð35Þ

where Pj is the complementary energy in the jth block. For Block 1,

P1 ¼
Z �L�Lc

2

�L
2

N1
2

N1 dx
E2A

�
þM1
2

M1 dx
E2I

þ Q1
2

kQ1 dx
G23A

�
; ð36Þ

where the cross-sectional area A ¼ h=2, the moment of area I ¼ h3=96, and the transverse shear factor
k ¼ 1:2 (Cook and Young, 1999). For Block 2,

P2 ¼
Z 0

�L�Lc
2

N2
2

N2 dx
E2A

�
þM2
2

M2 dx
E2I

þ Q2
2

kQ2 dx
G23A

�
: ð37Þ

For Block 3,

P3 ¼
Z L�Lc

2
�Ls

0

N3
2

N3 dx
E1A

�
þM3
2

M3 dx
E1I

þ Q3
2

kQ3 dx
G13A

�
: ð38Þ

For Block 4,

P4 ¼
Z L�Lc

2

L�Lc
2

�Ls

N4
2

N4 dx
E1A

�
þM4
2

M4 dx
E1I

þ Q4
2

kQ4 dx
G13A

�
: ð39Þ

For Block 5,

P5 ¼
Z L

2

L�Lc
2

N5
2

N5 dx
E1A

�
þM5
2

M5 dx
E1I

þ Q5
2

kQ5 dx
G13A

�
: ð40Þ
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For Block 6,

P6 ¼
Z �L�Lc

2

�L
2

N6
2

N6 dx
E1A

�
þM6
2

M6 dx
E1I

þ Q6
2

kQ6 dx
G13A

�
: ð41Þ

For Block 7,

P7 ¼
Z 0

�L�Lc
2

N7
2

N7 dx
E1A

�
þM7
2

M7 dx
E1I

þ Q7
2

kQ7 dx
G13A

�
: ð42Þ

For Block 8,

P8 ¼
Z L�Lc

2
�Ls

0

N8
2

N8 dx
E2A

�
þM8
2

M8 dx
E2I

þ Q8
2

kQ8 dx
G23A

�
: ð43Þ

For Block 9,

P9 ¼
Z L�Lc

2

L�Lc
2

�Ls

N9
2

N9 dx
E2A

�
þM9
2

M9 dx
E2I

þ Q9
2

kQ9 dx
G23A

�
: ð44Þ

Finally, for Block 10,

P10 ¼
Z L

2

L�Lc
2

N10
2

N10 dx
E2A

�
þM10
2

M10 dx
E2I

þ Q10
2

kQ10 dx
G23A

�
: ð45Þ

Note that Ea and Ga3ða 2 f1; 2gÞ in Eqs. (36)–(45) are material properties with respect to the three principal
material axes of warp/fill yarns.

Applying Castigliano�s second theorem then gives, from Eq. (35),

Dx ¼
oPc
oNx

¼
X10
j¼1

oPj

oNx
; ð46Þ

where Dx is the displacement of the repeating unit in the loading direction. By using Eqs. (1)–(4) and

(21a,b,c)–(26a,b,c) in Eqs. (36)–(45), oPj=oNxðj 2 f1; 2; . . . ; 10gÞ can be explicitly evaluated. The results are
provided in Appendix A. The substitution of these results into Eq. (46) will then lead to the final expression
of the load–displacement relation Dx ¼ f ðNxÞ.

4. Young’s modulus

The effective Young�s modulus of the damaged laminate can be determined using the average strain
theorem in homogenization theory of composite materials (see, for example, Hashin, 1983). According to

this theorem,

e0x ¼ ex �
Dx

L
; ð47Þ

where e0x is the uniform (constant) strain applied in the longitudinal direction on the homogenized body.
Therefore, the effective Young�s modulus is given by

E

x ¼

rx

e0x
¼ L

h
Nx

Dx
: ð48Þ
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Using the functional relationship Dx ¼ f ðNxÞ derived in the preceding section, one can finally obtain from
Eq. (48) that

1

E

x

L
h
¼ 1

2E1

CN3 þ CN4 þ CN5 þ CN6 þ CN7

A

�
þ CM3 þ CM4 þ CM7

I

�
þ CQ3 þ CQ4 þ CQ7

2G13A

þ 1

2E2

CN2 þ CN8 þ CN9

A

�
þ CM2 þ CM8 þ CM9

I

�
þ CQ2 þ CQ8 þ CQ9

2G23A
; ð49Þ

where constants CN2 � CN9, CQ2 � CQ4, CQ7 � CQ9, CM2 � CM4 and CM7 � CM9 are given in Appendix B. By
using the closed-form formula given in Eq. (49), the effective Young�s modulus of the damaged laminate,
E

x , can be readily determined.

5. Numerical results

To illustrate the analytical solution derived above, a parametric study of sample cases is carried out in

this section. Two unidirectional composites, glass fiber/epoxy and ceramic fiber/ceramic, are used as warp/

fill yarn materials in this study. The engineering properties of the two composites, which are regarded as

transversely isotropic, are listed in Table 1, where the subscripts �A� and �T� stand for axial and transverse
directions, respectively. These properties are taken from Hashin (1987) (for the glass fiber/epoxy composite)

and Ji et al. (1998) (for the ceramic fiber/ceramic composite).

Some representative numerical values of the effective Young�s modulus (E

x ) are graphically illustrated in

Figs. 6–9, which are obtained using Eq. (49). In each case, three values of L=h, which symbolizes the density
of cracks in transverse yarns, are considered. Following Gao et al. (1988), l ¼ 0:1 is taken in the sample
calculations. The Mathematica program (Wolfram, 1996) is employed in the computation.

Based on the numerical data shown in Figs. 6–9, the following observations can be made:

(1) The effective Young�s modulus (E

x ) estimated by the current mechanics-of-materials model agrees

fairly well with that predicted by the more accurate variational solution derived in Gao and Mall (2001).

For example, when L=h ¼ 3 the two values of E

x obtained here for the case with only transverse yarn

cracking (that is, Lc ¼ 0 ¼ Ls), i.e., 17.47 and 81.35 GPa, are quite close to the two corresponding values
(plane stress case) given in Gao and Mall (2001), which are 17.81 and 83.33 GPa, respectively.
(2) The larger L=h is, the larger E


x becomes. This is true for all sample cases having different Lc and/or Ls.
That is, when the density of transverse yarn cracks (h=L) is smaller, the reduction in Young�s modulus is
less, regardless of the influences of the second and third damage modes. Also, it is seen that the values of E


x

corresponding to two neighboring values of L=h are getting closer when L=h becomes larger. These reflect
the effects of transverse yarn cracking (i.e., the first damage mode) on the stiffness of the damaged laminate.

The trends shown here are the same as those demonstrated by the variational solution of Gao and Mall

(2001), where only the first damage mode is considered.

Table 1

Material properties

Property Glass/epoxy Ceramic/ceramic

EA (GPa) 41.7 140.0

ET (GPa) 13.0 88.0

mA 0.30 0.20

mT 0.42 0.26

GA (GPa) 3.40 44.0

GT (GPa) 4.58 35.0
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(3) The further reduction in Young�s modulus due to interface debonding (in addition to the reduction
caused by transverse yarn cracking and interface sliding) appears to be monotonic: the larger the debonded

length is, the smaller Young�s modulus becomes. This holds for both composite systems, as illustrated in
Figs. 7 and 9. The reason for this feature is that progressive debonding along the interface results in the
continuous increase of the length of Blocks 1 and 10, which have zero-valued resultant forces and do not

store any energy, and thus monotonically reduce the load-carrying capacity of the entire unit cell.

(4) Interface sliding also leads to further reduction in Young�s modulus in a monotonic fashion. That is,
Young�s modulus decreases monotonically with the increase of the sliding length, which is true for all cases
considered, as shown in Figs. 6 and 8. This is expected, since a sliding interface (even with friction) is

inherently weaker than a perfectly bonded interface (along which the friction coefficient l is regarded to be
infinitely large).

6. Summary

An analytical model is developed for damaged woven fabric composites using a mosaic (woven) lami-

nate. It provides a closed-form formula for calculating the effective Young�s modulus of damaged woven
laminates. The present analysis is based on Castigliano�s second theorem and is of the mechanics-of-
materials type. The new model accounts for the first three damage modes observed in a typical woven fabric

composite (i.e., transverse yarn cracking, interface debonding, and sliding with friction at the interface),

although it contains only one independent interfacial parameter (i.e., the friction coefficient between warp

and fill yarns).
The current solution, as a closed-form one, is inherently suitable for parametric studies. A parametric

study is performed here for some 192 sample cases using the derived analytical formula. These sample cases

involve two different composite systems (used as the yarn materials). When only the first damage mode (i.e.,

transverse yarn cracking) is present, numerical values of the effective Young�s modulus estimated by the
current mechanics-of-materials model are in fairly good agreement with those predicted by the elasticity

(variational) solution of Gao and Mall (2001). However, when all of the first three damage modes are

involved, the situation becomes more complicated, as demonstrated by the numerical results shown in Figs.

6–9. The new analytical model can deal with this situation in a quantitative manner. In contrast, existing
analytical models, including that of Gao and Mall (2001), do not have this capability.
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As in all other analytical studies, the new model has its own limitations arising from the simplifying

assumptions made to facilitate the derivation. For example, the use of a mosaic laminate ignores undu-

lations of fiber yarns, which can be very important for woven composites with large waviness. Nevertheless,

with all expressions derived in explicit forms, the current analytical model has an additional use, viz. it can
be employed as a benchmark solution to validate computer codes or numerical analyses.
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Appendix A

Note that from Eqs. (1) and (36) it follows that

oP1
oNx

¼ 0; ðA:1Þ

from Eqs. (2) and (40) that

oP5
oNx

¼ LcNx

2E1A
; ðA:2Þ

from Eqs. (3) and (41) that

oP6
oNx

¼ LcNx

2E1A
; ðA:3Þ

and from Eqs. (4) and (45) that

oP10
oNx

¼ 0: ðA:4Þ

Using Eqs. (21a,b,c) in Eq. (37) gives

oP2
oNx

¼ b1s2iðL� LcÞ3

24E2A
þ 1:2b2r2iðL� LcÞ3

24G23A

þ 1

128E2I
b2r2iðL� LcÞ5

5

"
� hðb2s2i þ b1r2iÞðL� LcÞ4

4
þ h2ðL� LcÞ3b1s2i

3

#
; ðA:5Þ

where

b1 �
os2i
oNx

¼
1� 1

2
lLsb3


 �
L� ðLs þ LcÞ

; b2 �
or2i
oNx

¼ b3ðL� Lc � LsÞ
L� Lc

;

b3 �
or3i
oNx

¼ 6h
6L2 � 9LLs � 12LLc þ 9LcLs þ 6L2c þ 4L2s

:

ðA:6Þ
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Substituting Eqs. (22a,b,c) into Eq. (38) yields

oP3
oNx

¼ b1s2i
3E1A

Lð
"

� Lc � LsÞ3 �
L� Lc
2

� �3#
þ 1

2G13A
L� Lc
2

�
� Ls

�
2

3
b3r3i

L� Lc
2

�"
� Ls

�2

� 1
2

b2r2ið þ b3r3iÞ Lð � LcÞ
L� Lc
2

�
� Ls

�
þ 2b2r2i

L� Lc
2

� �2#

þ 1

2E1I
r3i

L� Lc
2

�*
� Ls

�3 L� Lc
2

�

� Ls

�
b3
10

L� Lc
2

��
� Ls

�
� b2 L� Lcð Þ

16
þ b1h
32

�

þ L� Lc
6

�
� b2 L� Lcð Þ

8
þ b1h
8

��
þ 1
2

r2i Lð � LcÞ
L� Lc
2

�
� Ls

�
b3
8

L� Lc
2

�(
� Ls

�3

þ 1
3

L� Lc
2

�
� Ls

�2
b2 Lð

�
� LcÞ �

b1h
2

� b3
8

Lð � LcÞ
�
þ 1
16

L� Lc
2

�
� Ls

�
Lð � LcÞ b2 L� Lcð Þ � b1h

2

� �

þ L� Lc
2

b2 L� Lcð Þ
4

� b1h
4

� �
L� Lc
2

� 1
2

L� Lc
2

� Ls

� ��" )

þ s2i
L� Lc
2

�
� Ls

�
b3h
32

L� Lc
2

�(
� Ls

�3
þ 1
3

L� Lc
2

�
� Ls

�2�
� b2h L� Lcð Þ

4
þ b1h2

8
þ b3h L� Lcð Þ

16

�

� h
32

L� Lc
2

�
� Ls

�
Lð � LcÞ b2 Lð

�
� LcÞ �

b1h
2

�
� h
16

Lð � LcÞ
b2
4

Lð
�

� LcÞ �
b1h
4

�

� L� Lc
2

��
� Ls

�
þ 2 Lð � LcÞ

�)+
: ðA:7Þ

From Eqs. (23a,b,c) and (39) one obtains

oP4
oNx

¼ 1

2E1A
L3sD

b3l2Ls
10

��
� l
3

�
þ LsNx 2

�
� b3lLs
3

��
þ b3L4sD
20G13A

þ b3L4sD
4E1I

L2s
63

�
� hlLs
36

þ h2l2

80

�
:

ðA:8Þ

Using Eqs. (24a,b,c) in Eq. (42) results in

oP7
oNx

¼ 1

2E1A
s2i

L� Lc
2

� �2
1

3
b1ðL

�(
� LcÞ � 1

�
þ 1
2
NxðL� LcÞ 2

�
� 1
2
b1ðL� LcÞ

�)

þ 1

24G13A
ðb2 � c1Þðr2i � rc1ÞðL� LcÞ3 þ

1

16E1I
ðL� LcÞ3 ðr2i



� rc1Þ

L� Lc
2

ðb2 � c1Þ
20

ðL
�

� LcÞ þ
b1h
16

�

þ s2i
ðb2 � c1Þh
32

ðL
�

� LcÞ þ
b1h2

24

�)
; ðA:9Þ

where

c1 �
orc1
oNx

¼ 2h

ðL� LcÞ2
: ðA:10Þ
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It follows from Eqs. (25a,b,c) and (43) that

oP8
oNx

¼ 1

2E2A
s2i
2

3
b1 ðL
"(*

� Ls� LcÞ3�
L� Lc
2

� �3#
� ðL
"

� Ls� LcÞ2�
L� Lc
2

� �2#)

þNx 2
L� Lc
2

�(
� Ls

�
� b1 ðL

"
� Ls� LcÞ2�

L� Lc
2

� �2#)+

þ 1

2G23A
L� Lc
2

�(
� Ls

�2
ðr3i � rc2Þ

2

3
ðb3

�
� c2Þ

L� Lc
2

�
� Ls

�
� 1
2
ðb2� c1ÞðL� LcÞ

�

� 1
2
ðr2i � rc1ÞðL� LcÞ

L� Lc
2

�
� Ls

�
ðb3

�
� c2Þ

L� Lc
2

�
� Ls

�
� ðb2� c1ÞðL� LcÞ

�)

þ 1

2E1I
ðr3i

*
� rc2Þ

L� Lc
2

�
� Ls

�3 L� Lc
2

�

� Ls

�
b3
10

L� Lc
2

��
� Ls

�
� ðb2� c1Þ

16
ðL� LcÞ

þ b1h
32

�
þ 1
6
ðL� LcÞ

ðb2� c1Þ
8

ðL
�

� LcÞ þ
b1h
8

��
þ 1
2
ðr2i � rc1Þ

L� Lc
2

�
� Ls

�
ðL� LcÞ

�
(
� ðb3� c2Þ

L� Lc
2

�
� Ls

�2
1

8

L� Lc
2

��
� Ls

�
þ 1
12

ðL� LcÞ
�
þ L� Lc

2
� Ls

� �

� 1

2
ðb2� c1ÞðL� LcÞ þ

b1h
4

� �
2

3

L� Lc
2

� Ls

� �
þ 1
4
ðL� LcÞ

� �
þ b2� c1

4
ðL� LcÞ þ

b1h
4

� �
L� Lc
2

� L� Lc
2

þ 1
2

L� Lc
2

� Ls

� ��" )
þ s2i

L� Lc
2

�
� Ls

�

�
(
� ðb3� c2Þh

32

L� Lc
2

�
� Ls

�3
� h
6

L� Lc
2

�
� Ls

�2

�
�
� 1
2
ðb2� c1ÞðL� LcÞ �

b1h
4

þ ðb3� c2Þ
8

ðL� LcÞ
�

þ h
16

L� Lc
2

�
� Ls

�
ðL� LcÞ

1

2
ðb2

�
� c1ÞðL� LcÞ þ

b1h
4

�

þ h
16

ðL� LcÞ
b2
4
ðL

�
� LcÞ þ

b1h
4

�
L� Lc
2

� Ls

� �
þ 2ðL� LcÞ

� �)+
; ðA:11Þ

where

c2 �
orc2
oNx

¼ 2h

L� Lcð Þ2
: ðA:12Þ

Finally, from Eqs. (26a,b,c) and (44) one obtains

oP9
oNx

¼ b3l2L4sD
20E2A

þ 1

2G23A
DL4s

b3
10

��
� b2
4

�
� rc2L3s

b3
4

�
� 2
3
b2

��

þ 1

2E2I
2b3DL4s

L2s
252

�

þ hlLs
144

þ h2l2

320

�
� L4s b3rc2ð þ Dc2LsÞ

Ls
36

�
þ hl
40

�
þ c2rc2
10

L5s

�
: ðA:13Þ

This completes the evaluation of all oPj=oNx ðj 2 f1; 2; . . . ; 10gÞ, which will be substituted into Eq. (46) to
obtain Dx ¼ f ðNxÞ.
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Appendix B

The constants CN2 � CN9, CQ2 � CQ4, CQ7 � CQ9, CM2 � CM4 and CM7 � CM9 involved in Eq. (49) are given

by

CN2 ¼
2b21
3

L� Lc
2

� �3
; CQ2 ¼

2:4b22
3

L� Lc
2

� �3
;

CM2 ¼
b22
10

L� Lc
2

� �5
� hb1b2
8

L� Lc
2

� �4
þ h2b21
24

L� Lc
2

� �3
;

CN3 ¼
2b21
3

ðL
"

� Lc � LsÞ3 �
L� Lc
2

� �3#
;

CQ3 ¼
L� Lc
2

�
� Ls

�
2

3
b23

L� Lc
2

�"
� Ls

�2
� 1
2

b22



þ b23
�
Lð � LcÞ

L� Lc
2

�
� Ls

�
þ 2b22

L� Lc
2

� �2#
;

CM3 ¼ b3
L� Lc
2

�
� Ls

�3 L� Lc
2

�

� Ls

�
b3
10

L� Lc
2

��
� Ls

�
� b2ðL� LcÞ

16
þ b1h
32

�

þ L� Lc
6

�
� b2ðL� LcÞ

8
þ b1h
8

��
þ 1
2
b2ðL� LcÞ

L� Lc
2

�
� Ls

�
b3
8

L� Lc
2

�(
� Ls

�3

þ 1
3

L� Lc
2

�
� Ls

�2
b2ðL

�
� LcÞ �

b1h
2

� b3
8
ðL� LcÞ

�
þ 1
16

L� Lc
2

�
� Ls

�
ðL� LcÞ b2ðL

�
� LcÞ �

b1h
2

�

þ L� Lc
2

b2 L� Lcð Þ
4

�
� b1h
4

�
L� Lc
2

�
� 1
2

L� Lc
2

�
� Ls

���

þ b1
L� Lc
2

�
� Ls

�
b3h
32



L� Lc
2

�
� Ls

�3
þ 1
3

L� Lc
2

�
� Ls

�2�
� b2hðL� LcÞ

4
þ b1h2

8
þ b3hðL� LcÞ

16

�

� h
32

L� Lc
2

�
� Ls

�
ðL� LcÞ b2ðL

�
� LcÞ �

b1h
2

�

� h
16

ðL� LcÞ
b2
4
ðL

�
� LcÞ �

b1h
4

�
L� Lc
2

��
� Ls

�
þ 2ðL� LcÞ

��
;

CN4 ¼ b3L2s
b3l2Ls
10

�
� l
3

�
þ Ls 2

�
� b3lLs
3

�
; CQ4 ¼

b23L
3
s

10
;

CM4 ¼
1

2
b23L

3
s

L2s
63

�
� hlLs
36

þ h2l2

80

�
;

CN5 ¼ Lc; CN6 ¼ Lc; ðB:1Þ

and

CN7 ¼ b1
L� Lc
2

� �2
1

3
b1ðL

�
� LcÞ � 1

�
þ L� Lc

2
2

�
� 1
2
b1ðL� LcÞ

�
; CQ7 ¼

2

3
ðb2 � c1Þ2

L� Lc
2

� �3
;

CM7 ¼
L� Lc
2

� �3
1

2
ðb2



� c1ÞðL� LcÞ

ðb2 � c1Þ
20

ðL
�

� LcÞ þ
b1h
16

�
þ b1

ðb2 � c1Þh
32

ðL
�

� LcÞ þ
b1h2

24

��
;

CN8 ¼ b1
2

3
b1 ðL
"(

� Ls � LcÞ3 �
L� Lc
2

� �3#
� ðL
"

� Ls � LcÞ2 �
L� Lc
2

� �2#)

þ 2 L� Lc
2

�
� Ls

�
� b1 Lð

"
� Ls � LcÞ2 �

L� Lc
2

� �2#
;

X.-L. Gao et al. / International Journal of Solids and Structures 40 (2003) 981–999 997



CQ8 ¼
L� Lc
2

�
� Ls

�2
ðb3� c2Þ

2

3
ðb3

�
� c2Þ

L� Lc
2

�
� Ls

�
� 1
2
ðb2� c1ÞðL� LcÞ

�

� 1
2
ðb2� c1ÞðL� LcÞ

L� Lc
2

�
� Ls

�
ðb3

�
� c2Þ

L� Lc
2

�
� Ls

�
� ðb2 � c1ÞðL� LcÞ

�
;

CM8 ¼ ðb3 � c2Þ
L� Lc
2

�
� Ls

�3 L� Lc
2

�

� Ls

�
b3
10

L� Lc
2

��
� Ls

�
� ðb2� c1Þ

16
ðL� LcÞ þ

b1h
32

�

þ 1
6
ðL� LcÞ

ðb2� c1Þ
8

ðL
�

� LcÞ þ
b1h
8

��
þ 1
2
ðb2� c1Þ

L� Lc
2

�
� Ls

�
ðL� LcÞ

�
(
� ðb3 � c2Þ

L� Lc
2

�
� Ls

�2
1

8

L� Lc
2

��
� Ls

�
þ 1
12

ðL� LcÞ
�
þ L� Lc

2

�
� Ls

�

� 1

2
ðb2

�
� c1ÞðL� LcÞ þ

b1h
4

�
2

3

L� Lc
2

��
� Ls

�
þ 1
4
ðL� LcÞ

�
þ b2 � c1

4
ðL

�
� LcÞ þ

b1h
4

�

� L� Lc
2

L� Lc
2

�
þ 1
2

L� Lc
2

�
� Ls

�#)
þ b1

L� Lc
2

�
� Ls

�

�
(
� ðb3 � c2Þh

32

L� Lc
2

�
� Ls

�3
� h
6

L� Lc
2

�
� Ls

�2

�
�
� 1
2
ðb2� c1ÞðL� LcÞ �

b1h
4

þ ðb3� c2Þ
8

ðL� LcÞ
�
þ h
16

L� Lc
2

�
� Ls

�
ðL� LcÞ

� 1

2
ðb2

�
� c1ÞðL� LcÞ þ

b1h
4

�
þ h
16

ðL� LcÞ
b2
4
ðL

�
� LcÞ þ

b1h
4

�
L� Lc
2

��
� Ls

�
þ 2ðL� LcÞ

�)
;

CN9 ¼
b23l

2L3s
10

; CQ9 ¼ L3sb3
b3
10

�
� b2
4

�
� L3sc2

b3
4

�
� 2
3
b2

�
;

CM9 ¼ 2b23L3s
L2s
252

�
þ hlLs
144

þ h2l2

320

�
� 2b3c2L4s

Ls
36

�
þ hl
40

�
þ c22L

5
s

10
: ðB:2Þ

References

Bao, G., Song, Y., 1993. Crack bridging models for fiber composites with slip-dependent interfaces. J. Mech. Phys. Solids 41, 1425–

1444.

Birman, V., Byrd, L.W., 1999. Stiffness of woven ceramic matrix composites with matrix cracks. AIAA-99-1331.

Chou, T.W., Ishikawa, T., 1989. Analysis and modeling of two-dimensional fabric composites. In: Chou, T.W., Ko, F.K. (Eds.),

Textile Structural Composites. Elsevier, Amsterdam, pp. 209–264.

Cook, R.D., Young, W.C., 1999. Advanced Mechanics of Materials, second ed Prentice Hall, New Jersey.

Gao, F., Boniface, L., Ogin, S.L., Smith, P.A., Greaves, R.P., 1999. Damage accumulation in woven-fabric CFRP laminates under

tensile loading: Part 1. Observations of damage accumulation. Compos. Sci. Tech. 59, 123–136.

Gao, X.-L., Li, K., 2002. Damaged mosaic laminate model of woven fabric composites with transverse yarn cracking and interface

debonding. Compos. Sci. Tech. 62, 1821–1834.

Gao, X.-L., Mall, S., 2000. A two-dimensional rule-of-mixtures micromechanics model for woven fabric composites. ASTM J.

Compos. Tech. Res. 22, 60–70.

Gao, X.-L., Mall, S., 2001. Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–

874.

Gao, Y.-C., Mai, Y.-W., Cotterell, B., 1988. Fracture of fiber-reinforced materials. ZAMP 39, 550–572.

Hashin, Z., 1983. Analysis of composite materials––a survey. ASME J. Appl. Mech. 50, 481–505.

998 X.-L. Gao et al. / International Journal of Solids and Structures 40 (2003) 981–999



Hashin, Z., 1987. Analysis of orthogonally cracked laminates under tension. ASME J. Appl. Mech. 54, 872–879.

Ji, F.S., Dharani, L.R., Mall, S., 1998. Analysis of transverse cracking in cross-ply composite laminates. Adv. Compos. Mater. 7,

83–103.

McCarty, J.E., Johnson, R.W., Wilson, D.R., 1982. 737 graphite epoxy horizontal stabilizer certification. In: Proceedings of the 23rd

AIAA SDM Conference, Part 1, May 1982, New Orleans, LA, pp. 307–322.

Morvan, J.-M., Baste, S., 1998. Effects of two-scale transverse crack systems on the non-linear behaviour of a 2D SiC-SiC composite.

Mater. Sci. Eng. A 250, 231–240.

Roy, A.K., 1998a. Variational models for stresses in textile composites and foams. In: Proceedings of the 1998 AFOSR Mechanics of

Composite Materials Program Review Meeting, October 14–16, 1998, Dayton, OH, pp. 25–30.

Roy, A.K., 1998b. Comparison of in situ damage assessment in unbalanced fabric composite and model laminate of planar (one-

directional) crimping. Compos. Sci. Tech. 58, 1793–1801.

Tan, P., Tong, L., Steven, G.P., 1997. Modelling for predicting the mechanical properties of textile composites––a review. Composites

28A, 903–922.

Tandon, G.P., Pagano, N.J., 1996. Matrix crack impinging on a frictional interface in unidirectional brittle matrix composites. Int. J.

Solids Struct. 33, 4309–4326.

Wolfram, S., 1996. The Mathematica Book, third ed Cambridge University Press, Cambridge.

X.-L. Gao et al. / International Journal of Solids and Structures 40 (2003) 981–999 999


	A mechanics-of-materials model for predicting Young&rsquo;s modulus of damaged woven fabric composites involving three damage modes
	Introduction
	Equilibrium analysis
	Load-displacement relation
	Young&rsquo;s modulus
	Numerical results
	Summary
	Acknowledgements
	Appendix A
	Appendix B
	References


